UNUSUAL PHOTODIMERS FROM A NAPHTHO-2,4-CYCLOHEPTADIENONE:

EVIDENCE FOR TRANS INTERMEDIATES

Harold Hart* and Mikio Suzuki

Department of Chemistry, Michigan State University East Lansing, Michigan 48824, U.S.A.

(Received in USA 7 July 1975; received in UK for publication 28 August 1975)

In previous papers 1,2 we showed that irradiation of c in an inert solvent produces two

photodimers, χ and \mathfrak{Z} , via a trans intermediate³ $\downarrow t$ which can be trapped by furan.² We now find

that irradiation of naptho-analogs of $l_{\mathcal{L}}$ does not give dimers which correspond in structure to $l_{\mathcal{L}}$ and $l_{\mathcal{L}}$, although intermediates analogous to $l_{\mathcal{L}}$ are formed.

Irradiation of $4c^{4,5}$ (0.05M in cyclohexane, 450W Hanovia lamp, Pyrex, 4 hr) gave four crystalline photodimers⁶ to which we assign structures 5^{7} and 6. The mass spectra showed that all three stereoisomers of 5 were cyclobutane dimers [the base peak corresponded to P/2 (m/e 236) and the parent peak P had a low intensity (5% of base or less, at m/e 472)]. Dimer 6 was unique, the parent peak (m/e 472) being the base peak. The dimer structures were determined by single crystal x-ray analysis.⁸

+

5ttc (15%) mp 278-279°

5ctc (7%) mp >300°

In contrast with 4c, irradiation of χ_c ^{4,5} or 8c ^{4,5} under similar conditions in cyclohexane gave only recovered starting material in nearly quantitative yield. No dimers were

formed. However, irradiation of 4g, ζg or 8g as above but in furan as the solvent gave in each case two crystalline trans cycloadducts (2-11) in good yield. 5,9,10

We conclude that in each case a trans intermediate is formed, analogous to t from t. In the case of 4t, the unusual trans-fused cyclobutane dimers 5tcc or 5ttc may be formed,¹¹ or the intermediate may add to the styrene moiety in 4c, to give the cycloadduct tc. This adduct

is fully analogous to the one¹² proposed² as an intermediate in the formation of 2 from 12, except for the additional fused benzene rings. In the previous example^{1,2} aromatization was achieved by a 1.3-suprafacial acyl shift. The o-quinone dimethide moiety in 12, however, most likely has some diradical character. The naphthalene ring in 12 is beautifully located for radical attack, which gives 13; the geometry of 13 (from models) is just right for subsequent intramolecular 1.5-hydrogen abstraction, to give 5.

Many unanswered questions remain, but it seems clear that the trans intermediates formed by irradiation of χ_c , χ_c , χ_c or χ_c react similarly toward furan but very differently toward their cis counterparts.¹³ This research is continuing.

<u>Acknowledgement</u>. We are indebted to the National Institutes of Health (GM-15997) for financial support.

References and Notes

- 1. H. Hart, T. Miyashi, D.N. Buchanan and S. Sasson, <u>J. Am. Chem. Soc., 96</u>, 4857 (1974).
- 2. H. Hart and M. Suzuki, Tetrahedron Lett., preceding paper.
- 3. This may be a ground state trans benzocycloheptadienone as shown (]t), or an excited state of]c which reacts as if it had trans geometry at the double bond.
- The synthesis of 4c, 7c and 8c is analogous to the described¹ synthesis of 1c; details will be presented in a full paper.
- 5. All new compounds gave correct elemental analyses, and spectra in accord with the assigned structures. All yields are of pure, isolated products.
- 6. Compound & deposited as colorless needles during the irradiation and was recrystallized from acetone. The cyclobutane dimers were separated by column chromatography (silica gel 60, EM reagent, >230 mesh, methylene chloride eluent) in the order 5ctc, 5tcc and 5ttc; each was recrystallized from acetone.
- The designations t or c refer to the trans or cis geometry around the cyclobutane ring, proceeding clockwise from the 'upper left' carbon atom.
- 8. We are indebted to Dr. Carol Biefeld for the structure of 5tcc and to Dr. Donald Ward for the other structures; details will be published elsewhere.
- 9. It was possible to uniquely assign chemical shifts and coupling constants to each methine proton. The structures were obvious from these data; see ref. 2 for the principal arguments used in assigning structures to the analogous benzo adducts.
- 10. The isomers were separated by column chromatography (silica gel 60, EM reagent, >230 mesh, methylene chloride eluent); the <u>a</u> isomer was eluted before the <u>b</u> isomer; both isomers were recrystallized from hexanes.
- 11. Compound 5ctc, which represents only a minor fraction of total products, is the only product which still has cis stereochemistry at what was originally the double bond in the starting material. Other examples of trans-fused cyclobutanes are, of course, well known, especially from enones; for examples and some leading references, see R.M. Bowman, C. Calvo, J.J. McCullough, P.W. Rasmussen and F.F. Snyder, <u>J. Org. Chem.</u>, <u>37</u>, 2084 (1972).
- 12. See structure § in ref. 2.
- 13. We speculate that 7t and 8t are probably formed in cyclohexane as well as in furan, but that in the former solvent they simply return to their cis isomers.